
A Basic FidoNet(tm) Technical Standard
Draft FSC001-4 - August 18, 1986
Randy Bush, Pacific Systems Group

Copyright 1986, International FidoNet Association. All rights reserved.

Duplication and or distribution permitted for noncommercial purposes only.
For use in other circumstances, please contact IFNA.

A. Introduction

FidoNet has grown beyond most people's fantasies, and new FidoNet
implementations are appearing regularly. Unfortunately, the scattered
nature of the documentation and absence of clear testing procedures have
made implementation difficult. The International FidoNet Association
(IFNA), in its desire to promote and encourage FidoNet implementations,
suggested a project to create a technical standard for FidoNet. This is
the first draft document from that effort.

This document defines the data structures and communication protocols
which a FidoNet implementation must provide. The implementor of FidoNet
compatible systems is the intended audience of this document.

The layered metaphor of the ISO Open Systems Interface reference model
has been used to view FidoNet from a standard perspective. As with most
prospective ISO/OSI descriptions, FidoNet does not always make this
easy.

The content of this document was gleaned from the references given at
the end. This is not a a proposal, nor is it yet a standard; it is a
plea for correction, more information, and other reference documents.

Please direct technical comments and errata to
Randy Bush FidoNet : 122/6
Pacific Systems Group TeleMail : RBush/PSG
601 South 12th Court Usenet : ..!vaxine!spark!122!6!rb
Coos Bay, Oregon US-97420 Compu$erve : 70265,757

and administrative enquiries to
Ken Kaplan FidoNet : 1/0
International FidoNet Association
PO Box 41143
St. Louis, Missouri US-63141

1. Basic Requirements for a FidoNet Implementation

Compatibility is a set of abilities which, when taken as a whole, make
it safe to list a net or node in the IFNA nodelist. In other words,
if another node should attempt contact, does it have a reasonable
chance of successful communication? This is a social obligation, as
the calling system pays money for the attempt. Conversely, an
implementation should be able to successfully contact other systems,
as life is not a one-way street.

A FidoNet implementation must be able to call other nodes and transfer
messages and files in both directions. This includes pickup and poll.

1

A FidoNet implementation must be able to accept calls from other nodes
and transfer messages and files in both directions. This includes
pickup.

A FidoNet implementation must be able to receive and process the IFNA
format nodelist, and transfer nodelists to other nodes. A companion
document, FSC002, defines the IFNA format nodelist and how to
interpret and process it.

A FidoNet impemantation must route messages which do not have files
attached through net hosts as shown in the IFNA nodelist.

2. Levels of Compliance

This documents represents the most basic FidoNet implementation. A
future document will define well tested extensions which are optional
but provide sufficient additional function that implementors should
seriously consider them. SEAdog(tm), from System Enhancement
Associates, is an excellent example of such an extended FidoNet
implementation.

3. The ISO/OSI Reference Model (cribbed from "Protocol Verification via
Executable Logic Specifications", D. P. Sidhu, in Rudin & West)

In the ISO/OSI model, a distributed system consists of entities that
communicate with each other according to a set of rules called a
protocol. The model is layered, and there are entities associated
with each layer of the model which provide services to higher layers
by exchanging information with their peer entities using the services
of lower layers. The only actual communication between two systems is
at the lowest level.

Several techniques have been used in the specification of such
protocols. A common ingredient in all techniques is the notion of the
extended finite state automata or machine. Extensions include the
addition of state variables for the storing of state information about
the protocol. The state of an automation can change as a result of
one of the following events:

o Request from an upper network layer for service

o Response to the upper layer

o Request to the lower network layer to perform a service

o Response from the lower layer

o Interaction with the system and environment in which the protocol is
implemented (e.g. timeouts, host operating system aborts, ...)

A protocol specification, in a large part, consists of specifying
state changes in automata which model protocol entities and in
describing the data which they exchange.

2

4. Data Description

A language specific notation was avoided. Please help stamp out
environmental dependencies. Only you can prevent PClone market
dominance. Don't panic, there are rectangular record layouts too.

(* non-terminals *)
UpperCaseName - to be defined further on

(* literals *)
"ABC" - ASCII character string, no termination implied
nnH - byte in hexadecimal

(* terminals *)
someName - 16-bit integer, low order byte first (8080 style)
someName[n] - field of n bytes
someName[.n] - field of n bits
someName(n) - Null terminated string allocated n chars (incl Null)
someName{max} - Null terminated string of up to max chars (incl Null)

(* punctuation *)
a b - one 'a' followed by one 'b'
(a | b) - either 'a' or 'b', but not both
{ a } - zero or more 'a's
[b] - zero or one 'b'
(* comment *) - ignored

(* predeclared constant *)
Null = 00H

5. Finite State Machine Notation

.-----+----------+-------------------------+-------------------------+-----.
|State| State | Predicate(s) | Action(s) | Next|
| # | Name | | | St |
+-----+----------+-------------------------+-------------------------+-----+
| fnn*| | | | |
`-----+----------+-------------------------+-------------------------+-----'

State # - Number of this state (e.g. R13).
f - FSM initial (Window, Sender, Receiver, ...)
nn - state number
* - state which represents a lower level protocol which

is represented by yet another automation.

State Name - Descriptive name of this state.

Predicate(s) - Conditions which terminate the state. If predicates are
non-exclusive, consider them ordered.

Action(s) - Action(s) corresponding to predicate(s)

Next State - Subsequent state corresponding to predicate(s)

Ideally, there should be a supporting section for each state which
should give a prose discription of the state, its predicates, actions,
etc. So much for ideals.

3

B. Application Layer : the System from the User's View

The application layer is outside the domain of a FidoNet standard, as it
is the layer that the user's application sees as opposed to what FidoNet
sees. In recent months, there has been sufficient confusion and
discussion about the format of data at this level to warrant the
description of the data structure, the message as it is stored by Fido
and SEAdog.

Perfectly valid FidoNet systems may be implemented whose stored messages
differ greatly from this format.

1. Application Layer Data Definition : a Stored Message

Stored Message

Offset
dec hex

.---.
0 0 | |

Ü fromUserName Ü

| 36 bytes |
+-----------------------+-----------------------+

36 24 | |
Ü toUserName Ü

| 36 bytes |
+-----------------------+-----------------------+

72 48 | |
Ü subject Ü

| 72 bytes |
+-----------------------+-----------------------+

144 90 | |
Ü dateTime Ü

| 20 bytes |
+-----------------------+-----------------------+

164 A4 | timesRead (low order) | timesRead (high order)|
+-----------------------+-----------------------+

166 A6 | destNode (low order) | destNode (high order) |
+-----------------------+-----------------------+

168 A8 | origNode (low order) | origNode (high order) |
+-----------------------+-----------------------+

170 AA | cost (low order) | cost (high order) |
+-----------------------+-----------------------+

172 AC | origNet (low order) | origNet (high order) |
+-----------------------+-----------------------+

174 AE | destNet (low order) | destNet (high order) |
+-----------------------+-----------------------+

176 B0 | fill |
Ü 8 bytes Ü

+-----------------------+-----------------------+
184 B8 | replyTo (low order) | replyTo (high order) |

+-----------------------+-----------------------+
186 BA | Attribute (low order) | Attribute (high order)|

+-----------------------+-----------------------+
188 BC | nextReply (low order) | nextReply (high order)|

+-----------------------+-----------------------+
190 BE | text |

Ü unbounded Ü

| null terminated |
`---'

4

Message = fromUserName(36) (* Null terminated *)
toUserName(36) (* Null terminated *)
subject(36) (* see FileList below *)
DateTime (* message body was last edited *)
timesRead
destNode (* of message *)
origNode (* of message *)
cost (* in lowest unit of originator's

currency *)
origNet (* of message *)
destNet (* of message *)
fill[8]
replyTo (* msg to which this replies *)
AttributeWord
nextReply (* msg which replies to this *)
text(unbounded) (* Null terminated *)

DateTime = (* a character string 20 characters long *)
(* 01 Jan 86 02:34:56 *)

DayOfMonth " " Month " " Year " "
" " HH ":" MM ":" SS
Null

DayOfMonth = "01" | "02" | "03" | ... | "31" (* Fido 0 fills *)
Month = "Jan" | "Feb" | "Mar" | "Apr" | "May" | "Jun" |

"Jul" | "Aug" | "Sep" | "Oct" | "Nov" | "Dec"
Year = "01" | "02" | .. | "85" | "86" | ... | "99" | "00"
HH = "00" | .. | "23"
MM = "00" | .. | "59"
SS = "00" | .. | "59"

AttributeWord bit meaning
--- --------------------
0 + Private

1 + s Crash
2 Recd
3 Sent
4 + FileAttached
5 InTransit
6 Orphan
7 KillSent
8 Local
9 s HoldForPickup
10 + unused
11 s FileRequest
12 + s ReturnReceiptRequest
13 + s IsReturnReceipt
14 + s AuditRequest
15 s FileUpdateReq

s - this bit is supported by SEAdog only
+ - this bit is not zeroed before packeting

Bits numbers ascend with arithmetic significance of bit position.

The message text is unbounded and null terminated (note exceptions
below). <cr> (0DH) marks the end of a paragraph. <lf>s (0AH) should
be ignored. Systems which display message text should wrap long lines
to suit their application.

5

File Specifications

If one or more of FileAttached, FileRequest, or FileUpdateReq are
asserted in an AttributeWord, the subject{72} field is interpreted as
a list of file specifications which may include wildcards and other
system-dependent data. This list is of the form

FileList = [FileSpec { Sep FileSpec }] Null

FileSpec = (* implementation dependent file specification. may
not contain Null or any of the characters in Sep. *)

Sep = (" " | ",") { " " }

There are deviations from and additions to these specifications

1 - Fido does not necessarily terminate the message text with a Null,
but uses an empty line (0DH 0AH 0DH 0AH)

2 - Some programs embed 'soft' carriage returns (8DH) where they fold
long lines. Soft <cr>s should be politely ignored. Similarly
for any <lf>s after them.

3 - SEAdog zeros the message cost field when building a message.

4 - SEAdog uses a different format for dates, e.g.

DateTime = (* a character string 20 characters long *)
(* SEAdog format Mon 1 Jan 86 02:34 *)

DayOfWk " " DayOfMo " " Month " " Year "
" HH ":" MM Null

DayOfWeek = "Mon" | "Tue" | "Wed" | "Thu" | "Fri" | "Sat" | "Sun"
DayOfMon = " 1" | " 2" | " 3" | ... | "31" (* blank fill *)

2. Application Layer Protocol : Schedules and Events

At the application level, FidoNet imposes few protocol requirements.
An implementation must automatically enter windows, or time slots,
when it originates and receives node-to-node FidoNet connections. A
window is described by the presentation layer.

Routing of messages will usually be different and customizable for
each scheduled window.

The ability to send to and receive from any IFNA listed node during
the National Mail Hour is considered mandatory.

Current implementations assemble all data for outbound connections at
the start of a window, and disassemble inbound data at the end of a
window. Due to performance considerations on small machines, this is
considered a valid optimization. Observe that it somewhat inhibits
dynamic routing.

6

C. Presentation Layer : the User from the System's View

1. Presentation Layer Data Definition : the Packed Message

To conserve space and eliminate fields which would be meaningless if
sent (e.g. timesRead), messages are packed for transmission. As this
is a data structure which is actually transferred, its definition is
critical to FidoNet. A packed message has a number of fixed length
fields followed by four null terminated strings.

While most of the string fields in a stored message are fixed length,
to conserve space strings are variable length when in a packet. All
variable length strings are all Null terminated, including especially
the message text.

Packed Message

Offset
dec hex

.---.
0 0 | 0 | 2 | 0 | 0 |

+-----------------------+-----------------------+
2 2 | origNode (low order) | origNode (high order) |

+-----------------------+-----------------------+
4 4 | destNode (low order) | destNode (high order) |

+-----------------------+-----------------------+
6 8 | origNet (low order) | origNet (high order) |

+-----------------------+-----------------------+
8 8 | destNet (low order) | destNet (high order) |

+-----------------------+-----------------------+
10 A | Attribute (low order) | Attribute (high order)|

+-----------------------+-----------------------+
12 C | cost (low order) | cost (high order) |

+-----------------------+-----------------------+
14 E | |

Ü dateTime Ü

| 20 bytes |
+-----------------------+-----------------------+

24 18 | toUserName |
Ü max 36 bytes Ü

| null terminated |
+-----------------------+-----------------------+
| fromUserName |
Ü max 36 bytes Ü

| null terminated |
+-----------------------+-----------------------+
| subject |
Ü max 72 bytes Ü

| null terminated |
+-----------------------+-----------------------+
| text |
Ü unbounded Ü

| null terminated |
`---'

7

PakdMessage = 02H 00H (* message type, old type-1 is
obsolete *)

origNode (* of message *)
destNode (* of message *)
origNet (* of message *)
destNet (* of message *)
AttributeWord
cost (* in lowest unit of originator's

currency *)
DateTime (* message body was last edited *)
toUserName{36} (* Null terminated *)
fromUserName{36} (* Null terminated *)
subject{72} (* Null terminated *)
text{unbounded} (* Null terminated *)

2. Presentation Layer Protocol : a Mail Window

.-----+----------+-------------------------+-------------------------+-----.
|State| State | Predicate(s) | Action(s) | Next|
| # | Name | | | St |
+-----+----------+-------------------------+-------------------------+-----+
| W0 | WindTop | 1 end of window reached | reset modem to not answr| exit|
| | | 2 time remains in window| ensure modem can answer | W1 |
|-----+----------+-------------------------+-------------------------+-----|
W1	WindIdle	1 incoming call		W2
		2 receive-only mode		W1
		3 send-only mode		W3
		4 60-180 secs & no call		W3
-----+----------+-------------------------+-------------------------+-----				
W2*	WindRecv		(receive call R0)	W3
-----+----------+-------------------------+-------------------------+-----				
W3	WindCall	1 select outgoing call	increment try count	W4
		2 no outgoing calls		W0
-----+----------+-------------------------+-------------------------+-----				
W4*	WindSend		(make call S0)	W5
-----+----------+-------------------------+-------------------------+-----				
W5	WindMark	1 call successful	remove node fr call list	W0
		2 no connect	remove if try cnt > lim	W0
		3 call failed	incr conn cnt, remove	W0
			if con cnt > lim	
`-----+----------+-------------------------+-------------------------+-----'

8

D. Session Layer : Connecting Two FidoNet Systems

1. Session Layer Protocol : Connecting to Another FidoNet Machine

A session is a connection between two FidoNet machines. It is currently
assumed to be over the DDD telephone network via modems. The calling
machine starts out as the sender and the called machine as the receiver.
The pickup feature is described by the sender and receiver changing
roles midway through the session, after the sender has transferred the
message packet and any attached files. Due to the lack of security in

the pickup protocol (danger of pickup by a fake node), a change in the
protocol may be expected in the near future.

Sender

.-----+----------+-------------------------+-------------------------+-----.
|State| State | Predicate(s) | Action(s) | Next|
| # | Name | | | St |
|-----+----------+-------------------------+-------------------------+-----|
| S0 | SendInit | | dial modem | S1 |
|-----+----------+-------------------------+-------------------------+-----|
S1	WaitCxD	1 carrier detected	delay 5 seconds	S2
		2 busy, etc.	report no connection	exit
		3 voice	report no carrier	exit
		4 carrier not detected	report no connection	exit
		within 60 seconds		
-----+----------+-------------------------+-------------------------+-----				
S2	WhackCRs	1 over 30 seconds	report no response <cr>	exit
		2 ?? <cr>s received	delay 1 sec	S3
		3 <cr>s not received	send <cr> <sp> <cr> <sp>	S2
			delay ??? secs	
-----+----------+-------------------------+-------------------------+-----				
S3	WaitClear	1 no input for 0.5 secs	send TSYNCH = AEH	S4
		2 over 60 seconds	hang up, report garbage	exit
		and line not clear		
-----+----------+-------------------------+-------------------------+-----				
S4*	SendMail		(XMODEM send packet XS0)	S5
-----+----------+-------------------------+-------------------------+-----				
S5	CheckMail	1 XMODEM successful	(Fido registers success)	S6
		2 XMODEM fail or timeout	hang up, report mail bad	exit
-----+----------+-------------------------+-------------------------+-----				
S6	SendAtt	1 more files attached		S7
		2 no more files	send EOT	S9
-----+----------+-------------------------+-------------------------+-----				
S7*	SendFile		(BATCH send a file BS0)	S8
-----+----------+-------------------------+-------------------------+-----				
S8	CheckFile	1 BATCH send successful		S6
		2 BATCH send failed	hang up, rept files fail	exit
-----+----------+-------------------------+-------------------------+-----				
S9	TryPickup	1 wish to pickup	note send ok	R2*
		2 no desire to pickup	delay 5 secs	exit
			hang up, rept send ok	
`-----+----------+-------------------------+-------------------------+-----'

Although the above shows the sender emitting only one TSYNCH, it is
recommended that a timeout of 5-20 seconds should initiate another TSYNCH.
The receiver should tolerate multiple TSYNCHs.

9

Receiver

The receiving FSM is given an external timer, the expiration of which
will cause termination with a result of 'no calls' (R0.2).

.-----+----------+-------------------------+-------------------------+-----.
|State| State | Predicate(s) | Action(s) | Next|
| # | Name | | | St |
+-----+----------+-------------------------+-------------------------+-----+
| R0 | WaitCxD | 1 carrier detected | delay ??? seconds | R1 |
| | | 2 external timer expires| report no calls | exit|
|-----+----------+-------------------------+-------------------------+-----|
| R1 | WaitBaud | 1 baud rate detected | send signon with <cr>s | R2 |
| | | 2 no detect in ?? secs | hang up, report no baud | exit|
|-----+----------+-------------------------+-------------------------+-----|
| R2 | WaitTsync| 1 TSYNCH received | ignore input not TSYNCH | R3 |
| | | 2 60 seconds timeout | hang up, report not Fido| exit|
|-----+----------+-------------------------+-------------------------+-----|
| R3* | RecMail | | (XMODEM rec packet XR0) | R4 |
|-----+----------+-------------------------+-------------------------+-----|
R4	XRecEnd	1 XMODEM successful	delay 1 second	R5
			flush input	
		2 XMODEM failed	hang up, rept mail fail	exit
-----+----------+-------------------------+-------------------------+-----				
R5*	RecFiles		(BATCH rec files BR0)	R6
-----+----------+-------------------------+-------------------------+-----				
R6	ChkFiles	1 BATCH recv successful	delay 2 secs	R7
		2 BATCH recv failed	hang up, report bad file	exit
-----+----------+-------------------------+-------------------------+-----				
R7	AllowPkup	1 have pickup for sender	receiver becomes sender	S3*
		2 nothing to pickup	hang up, rept recv ok	exit
`-----+----------+-------------------------+-------------------------+-----'

1

E. Transport Layer : ?????

1. Data Definitions

2. Tranport Layer Protocol : Routing

FidoNet does not necessarily send a message directly to its
destination. To reduce the number of network connections, mail to a
subset of the nodelist may be routed to one node for further
distribution within that subset. In addition, custom routing is
possible. Routing of a message is determined in one of three ways.

o If there are files attached, then a message must be sent directly to
its destination.

o Messages without attached files should be routed through the inbound
host of the destination node's subnet as specified by an IFNA format
nodelist.

o To prevent overloading of inbound hosts, a system should provide for
host routing to be disabled for a target node, or nodes.

1

F. Network Layer : the Network's View of the System, Routing and Packets

1. Network Layer Data Definition : the Packet Header

The packet contains messages in packed format to be transferred over
the net during a connection. As this data structure is transferred,
its definition is critical to FidoNet.

A packet may contain zero or more packed messages. A packet without
messages is often generated as a poll packet.

Every packet begins with a packet header. The fields of the packet
header are of fixed length.

Packet Header
Offset

dec hex
.---.

0 0 | origNode (low order) | origNode (high order) |
+-----------------------+-----------------------+

2 2 | destNode (low order) | destNode (high order) |
+-----------------------+-----------------------+

4 4 | year (low order) | year (high order) |
+-----------------------+-----------------------+

6 6 | month (low order) | month (high order) |
+-----------------------+-----------------------+

8 8 | day (low order) | day (high order) |
+-----------------------+-----------------------+

10 A | hour (low order) | hour (high order) |
+-----------------------+-----------------------+

12 C | minute (low order) | minute (high order) |
+-----------------------+-----------------------+

14 E | second (low order) | second (high order) |
+-----------------------+-----------------------+

16 10 | baud (low order) | baud (high order) |
+-----------------------+-----------------------+

18 12 | 0 | 2 | 0 | 0 |
+-----------------------+-----------------------+

20 14 | origNet (low order) | origNet (high order) |
+-----------------------+-----------------------+

22 16 | destNet (low order) | destNet (high order) |
+-----------------------+-----------------------+

24 18 | ProductCode | |
+-----------------------+ |
| fill |
Ü 33 bytes Ü

+-----------------------+-----------------------+
58 3A | zero or more |

Ü packed Ü

| messages |

+-----------------------+-----------------------+
| 0 | 0 | 0 | 0 |
`---'

1

Packet = PacketHeader { PakdMessage } 00H 00H

PacketHeader = origNode (* of packet, not of messages in packet *)
destNode (* of packet, not of messages in packet *)
year (* of packet creation, e.g. 1986 *)
month (* of packet creation, 0-11 for Jan-Dec *)
day (* of packet creation, 1-31 *)
hour (* of packet creation, 0-23 *)
minute (* of packet creation, 0-59 *)
second (* of packet creation, 0-59 *)
baud (* max baud rate of orig and dest, 0=SEA *)
PacketType (* old type-1 packets now obsolete *)
origNet (* of packet, not of messages in packet *)
destNet (* of packet, not of messages in packet *)
ProductCode(* 0 for both Fido and SEAdog *)
fill[33]

PacketType = 02H 00H (* 01H 00H was used by Fido versions before 10
which did not support local nets. The

packed
message header was also different for those
versions *)

ProductCode = (00H (* Fido *)
| 00H (* SEAdog!? *)
| ??H (* Colossus *)
| ??H (* ?? *)
)

The remainder of the packet consists of packed messages. Each packed
message begins with a message type word 0200H. A pseudo-message
beginning with the word 0000H signifies the end of the packet.

1

2. Network Layer Data Description : a File with Attributes

The BATCH protocol uses the MODEM7 filename and TeLink/XMODEM file
transfer protocols to transfer the file with attributes.

When a file is transferred via FidoNet, an attempt is made to also
pass the operating system's attributes for the file such as length,
modification date, etc. FidoNet does this via a special prefix block
to the XMODEM file transfer using a protocol known as TeLink. As the
TeLink protocol relies on a modification to the XMODEM file transfer
protocol, it is documented at the data link layer level.

The MODEM7 file name is redundant if there is also a TeLink block, in
which case the name may be taken from either or both.

FileName as Sent
Offset

dec hex
.---.

0 0 | fileName |
Ü 8 bytes Ü

| left adjusted blank filled |
+-----------------------+-----------------------+

8 8 | fileExt |
Ü 3 bytes Ü

| left adjusted blank filled |
`---'

3. Network Layer Protocol : BATCH File Finite State Machines

BATCH File Sender

.-----+----------+-------------------------+-------------------------+-----.
|State| State | Predicate(s) | Action(s) | Next|
| # | Name | | | St |
|-----+----------+-------------------------+-------------------------+-----|
| BS0*| SendFName| | (MODEM7 FName send MS0) | BS1 |
|-----+----------+-------------------------+-------------------------+-----|
| BS1 | CheckFNm | 1 MODEM7 Filename ok | (TeLink send file XS0) | BS2 |

| | | 2 MODEM7 Filename bad | report name send bad | exit|
|-----+----------+-------------------------+-------------------------+-----|
| BS2 | CheckFile| 1 TeLink send ok | report file send ok | exit|
| | | 2 TeLink send bad | report file send bad | exit|
`-----+----------+-------------------------+-------------------------+-----'

BATCH File Receiver

.-----+----------+-------------------------+-------------------------+-----.
|State| State | Predicate(s) | Action(s) | Next|
| # | Name | | | St |
|-----+----------+-------------------------+-------------------------+-----|
| BR0*| RecvName | | (MODEM7 FName recv MR0) | BR1 |
|-----+----------+-------------------------+-------------------------+-----|
BR1	CheckFNm	1 MODEM7 no more files	report files recd ok	exit
		2 MODEM7 Filename ok	(TeLink recv file XR0)	BR2
		2 MODEM7 Filename bad	report name recv bad	exit
-----+----------+-------------------------+-------------------------+-----				
BR2	CheckFile	1 TeLink recv ok	report file recv ok	exit
		2 TeLink recv bad	report file recv bad	exit
`-----+----------+-------------------------+-------------------------+-----'

1

G. Data Link Layer : Error-Free Data Transfer

1. Data Link Layer Data Definition : XMODEM/TeLink Blocks

XMODEM transfers are in blocks of 128 uninterpreted data bytes
preceeded by a three byte header and followed by either a one byte
checksum or a two byte crc remainder. XMODEM makes no provision for
data streams which are not an integral number of blocks long.
Therefore, the sender must pad with zeros streams whose length is not
a multiple of 128 bytes, and use some other means to convey the true
data length to the receiver (e.g. TeLink file info block).

The sender returns an EOT instead of a data block when no data remain.

The protocol is receiver driven, the receiver polling the sender for
each block. If the receiver polls for the first block using a "C"
(43H) as the poll character, it would prefer to have the CRC-CCITT
polynomial remainder error detection code at the end of each block as
opposed to a one byte unsigned checksum. The sender will respond to
the "C" poll iff it can comply. If the sender chooses checksum as
opposed to CRC, it waits for the receiver to poll with NAK (15H).
Should the checksum method be preferable to the receiver, it polls
with NAK rather than "C".

Data blocks contain sequence numbers so the receiver can ensure it has
the correct block. Block numbers are sequential unsigned eight bit
integers beginning with 01H and wrapping to 00H, except that a TeLink
block is given sequence number 00H.

For files which are attached to the mail packet, not the mail packet
itself, if the sending system is aware of the file attributes as they
are known to the operating system, then the first block of the XMODEM
transfer may be a special TeLink block to transfer that information.
This block differs in that the first byte is a SYN character as

opposet to an SOH. Should the receiver be unwilling to handle such
information, after two NAKs (or "C"s), the sender skips this special
block and goes on to the data itself.

XMODEM Data Block (CRC mode)
Offset

dec hex
.---.

0 0 | SOH - Start Of Header - 01H |
+---+

1 1 | BlockNumber |
+---+

2 2 | BlockComplement |
+---+

3 3 | 128 bytes of |
Ü uninterpreted Ü

| data |
+---+

131 83 | CRC high order byte |
+---+

132 84 | CRC low order byte |
`---'

1

XMODEM Data Block Checksum mode)
Offset

dec hex
.---.

0 0 | SOH - Start Of Header - 01H |
+---+

1 1 | BlockNumber |
+---+

2 2 | BlockComplement |
+---+

3 3 | 128 bytes of |
Ü uninterpreted Ü

| data |
+---+

131 83 | Checksum byte |
`---'

TeLink File Descriptor Block
Offset

dec hex
.---.

0 0 | SYN - File Info Header - 16H |
+---+

1 1 | 00H |
+---+ data offset

2 2 | FFH | dec hex

+---+
3 3 | File Length, least significant byte | 0 0

+---+
4 4 | File Length, second to least significant byte | 1 1

+---+
5 5 | File Length, second to most significant byte | 2 2

+---+
6 6 | File Length, most significant byte | 3 3

+---+
7 7 | Creation Time of File | 4 4

| "DOS Format" |
+---+

9 9 | Creation Date of File | 6 6
| "DOS Format" |
+---+

11 B | File Name | 8 8
Ü 16 chars Ü

| left justified blank filled |
+---+

27 1B | 00H | 24 18
+---+

28 1C | Sending Program Name | 25 19
Ü 15 chars Ü

| left justified Null filled |
+---+

43 2B | 01H (for CRC) or 00H | 40 28
+---+

44 2C | fill | 41 29
Ü 86 bytes Ü

| all zero |
+---+

131 83 | Checksum byte |
`---'

1

XMODEMData = XMODEMBlock (* block of data with header and
trailer *)

| TeLinkBlock (* TeLink File Descriptor Block *)
| ACK (* acknowledge data received ok *)
| NAK (* negative ACK & poll 1st block *)
| EOT (* end of xfer, after last block *)
| "C" (* 43H *)

XMODEMBlock = SOH (* Start of Header, XMODEM Block *)
blockNumber[1] (* sequence, i'=mod(i+1, 256) *)
blockCompl[1] (* one's compl of BlockNumber *)
data[128] (* uninterpreted user data block *)
(CRC | Checksum) (* error detect/correction code *)

TeLinkBlock = SYN (* File Info Header *)
00H (* block no, must be first block *)
FFH (* one's complement of block no *)
fileLength[4] (* length of data in bytes *)
CreationTime[2] (* time file last modified or zero *)
CreationDate[2] (* date file last modified or zero *)
fileName(16) (* name of file, not vol or dir *)

00H (* header version number *)
sendingProg(16) (* name of program on send side *)
crcMode[1] (* 01H for CRC 00H for Checksum *)
fill[87] (* zeroed *)
(CRC | Checksum) (* error detect/correction code *)

ACK = 05H (* acknowledge data received ok *)
NAK = 15H (* negative ACK & poll 1st block *)
SOH = 01H (* start of header, begins block *)
SYN = 16H (* start of TeLink file info blk *)
EOT = 04H (* end of xfer, after last block *)

CRC = crc[2] (* CCITT Cyclic Redundancy Check *)

Checksum = checksum[1] (* low 8 bits of sum of data bytes
using unsigned 8 bit arithmetic *)

CreationDate = year[.7] (* 7 bits, years since 1980, 0-127 *)
month[.4] (* 4 bits, month of year, 1-12 *)
day[.5] (* 5 bits, day of month, 1-31 *)

CreationTime = hour[.5] (* 5 bits, hour of day, 0-23 *)
minute[.6] (* 6 bits, minute of hour, 0-60 *)
biSeconds[.2] (* 6 bits, seconds/2, 0-28 *)

1

2. Data Link Layer Protocol : XMODEM/TeLink Finite State Machines

XMODEM/TeLink Sender

.-----+----------+-------------------------+-------------------------+-----.
|State| State | Predicate(s) | Action(s) | Next|
| # | Name | | | St |
|-----+----------+-------------------------+-------------------------+-----|
XS0	WaitTeLnk	1 over 40-60 seconds	report sender timeout	exit
		2 over 2 tries	note TeLink block failed	XS1
		3 NAK or "C" received	send TeLink, incr tries	XS0
		4 ACK received	TeLink ok, set crc/cksm	XS1
-----+----------+-------------------------+-------------------------+-----				
XS1	WaitStart	1 over 40-60 seconds	report sender timeout	exit
		2 over 20 tries	report send failed	exit

		3 NAK received	set checksum mode	XS2
		4 "C" recd, I can crc	set crc mode	XS2
		5 "C" recd, I can't crc		XS1
-----+----------+-------------------------+-------------------------+-----				
XS2	SendBlock	1 more data available	send next data block	XS3
			as checksum or crc	
		2 last block has gone	send EOT	XS4
-----+----------+-------------------------+-------------------------+-----				
XS3	WaitACK	1 10 retries or 1 minute	report send failed	exit
		2 ACK received		XS2
		3 NAK received	resend last block	XS3
-----+----------+-------------------------+-------------------------+-----				
XS4	WaitEnd	1 10 retries or 1 minute	report send failed	exit
		2 ACK received	report send successful	exit
		3 NAK received	resend EOT	XS4
`-----+----------+-------------------------+-------------------------+-----'

XMODEM/TeLink Receiver

.-----+----------+-------------------------+-------------------------+-----.
|State| State | Predicate(s) | Action(s) | Next|
| # | Name | | | St |
|-----+----------+-------------------------+-------------------------+-----|
| XR0 | RecStart | 1 prefer crc mode | Send "C" | XR1 |
| | | 2 want checksum mode | send NAK | XR1 |
|-----+----------+-------------------------+-------------------------+-----|
XR1	WaitFirst	1 10 retries or 1 minute	report receive failure	exit
		2 > 3 retries or 30 secs	set want checksum mode	XR0
		3 EOT received	send ACK, report no file	exit
		4 TeLink block recd	send ACK, set crc/cksm	XR2
		5 data block recd	send ACK, set crc/cksm	XR2
		6 bad block or 2-10 secs	incr retry count	XR0
-----+----------+-------------------------+-------------------------+-----				
XR2	WaitBlock	1 10 retries or 1 minute	report receive failure	exit
		2 EOT received	send ACK, report recd ok	exit
		3 data block received	send ACK	XR2
		4 bad block or 2-10 secs	send NAK, incr retry cnt	XR2
`-----+----------+-------------------------+-------------------------+-----'

1

3. Data Link Layer Protocol : MODEM7 Filename Finite State Machines

MODEM7 Filename Sender

.-----+----------+-------------------------+-------------------------+-----.
|State| State | Predicate(s) | Action(s) | Next|
| # | Name | | | St |
+-----+----------+-------------------------+-------------------------+-----+
| MS0 | WaitNak | 1 20 retries or 1 minute| filename send failed | exit|

| | | 2 NAK received | send ACK & 1st ch of fn | MS1 |
+-----+----------+-------------------------+-------------------------+-----+
MS1	WaitChAck	1 ACK rcd, fname done	send SUB	MS2
		2 ACK rcd, fname Üdone	send next ch of fname	MS1
		3 other char or 1 sec	send "u", incr retry cnt	MS0
+-----+----------+-------------------------+-------------------------+-----+				
MS2	WaitCksm	1 cksum recd and ok	send ACK, report fn ok	exit
		2 cksum recd but bad	send "u", incr retry cnt	MS0
		3 no cksum in 1 sec	send "u", incr retry cnt	MS0
`-----+----------+-------------------------+-------------------------+-----'

MODEM7 Filename Receiver

.-----+----------+-------------------------+-------------------------+-----.
|State| State | Predicate(s) | Action(s) | Next|
| # | Name | | | St |
+-----+----------+-------------------------+-------------------------+-----+
| MR0 | SendNak | 1 20 tries or 1 minute | report filename failure | exit|
| | | 2 | send NAK, incr try cnt | MR1 |
+-----+----------+-------------------------+-------------------------+-----+
MR1	WaitAck	1 rcd ACK		MR2
		2 rcd EOT	report no files remain	exit
		3 5 secs & no ACK/EOT		MR0
+-----+----------+-------------------------+-------------------------+-----+				
MR2	WaitChar1	1 recd EOT (can happen?)	report no files remain	exit
		2 recd SUB	send checksum byte	MR3
		3 recd "u"		MR0
		4 recd char of name	send ACK	MR2
		5 no char in 1 second		MR0
+-----+----------+-------------------------+-------------------------+-----+				
MR3	WaitOkCk	1 recd ACK within 1 sec	report recd filename ok	exit
		2 recd "u" or other char		MR0
`-----+----------+-------------------------+-------------------------+-----'

The checksum is the unsigned low oder eight bits of the sum of the character
in the transferred filename including the SUB.

1

H. Physical Layer : the Actual Connection of Two FidoNet Systems

Will one of the more hardware-oriented comm types give me some idea of
what's needed here? Can we leave it open enough to allow implementation
over a non-dial net? Thanks.

I. The Node List
1. Node List Format
2. Node List Processing
3. Node Diff Format
4. Node Diff Processing

J. Tests to Validate an Implementation
o It would be ideal if validation were automatic
o Implementors could use in last stages of development
o Program(s)? Test scripts? Remote Fidos? Bad line conditions?

K. Example programs
o Bob Pritchett has offered
o Free to implementors et al
o Likely in C

L. Acknowledgements

Ben Baker, Thom Henderson, Tom Jennings, and Gee Wong suggested,
informed, reviewed, and encouraged. Thom and Tom allowed me to look at
actual code.

My employer, Pacific Systems Group was kind enough to donate my time to
research and to write this document.

Fido and FidoNet are trademarks of Tom Jennings.

SEAdog is a trademark of System Enhancement Associates.

2

M. Bibliography

Documentation for the protocols and data formats are scattered. Some
are unattributed, some even untitled. Filenames indicate that softcopy
is available from Fido 122/6 and likely many others.

Anonymous, changes to MODEM to impmlement CRC option XMDM-CRC.TXT

Christensen, Ward, "MODEM Protocol Overview" of 1 January 82 XMODEM.TXT

Henderson, Thom, "SEAdog Electronic Mail System Version 3" of April 86

International Standards Organization, "Data Processing - Open Systems
Interconnection - Basic Reference Model" ISO/DIS 7498 April 82

Jennings, Tom, "FidoNet Electronic Mail Protocol" 8 February 85
FIDOMAIL.DOC

Jennings, Tom, "Fido's Internal Structures" of 13 September 85
STRUCT.TXT aka STRUCT.APX

Jennings, Tom, "Extending XMODEM/MODEM File Transfer Protocol to support
DOS" 20 September 83 FILEXFER.DOC

Jordan, Larry, "XMODEM File Transfer Protocol" XMDM-LJ.TXT

Rudin, H and West, C, "Protocol Specification, Testing, and
Verification, III" Proceedings of the IFIP WG 6.1 Third International
Workshop on Protocol Specification, Testing, and Verification,
Rueschlikon Switzerland 31 May - 2 June 1983.

Tanenbaum, Andrew, "Computer Networks" Prentice Hall 1981

Messages generated by Fido 11w, SEAdog 3.8, and ARCmail 0.37

2
�

